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Abstract: This paper presents a robust evolving cloud-
based controller named RECCo. The controller has an
evolving fuzzy structure and the rules are represented by
data clouds. The evolving part of the algorithm allows
adding of new rules (clouds) and moreover, the robust
adaptive law using the steepest (gradient) descentmethod
adapts the PID-R parameters of each cloud. There are also
some protective mechanisms introduced which improve
the robustness of the algorithm. The effectiveness of the
controller was tested on the simulated surge tank model
and on the real two tank plant. Both plants have quite sim-
ilar structure but they have different nonlinear dynamics.
Using the same initializing procedure theRECCo controller
efficiently control both plants.

Keywords: robust control, evolving fuzzy system, adaptive
controller, surge tank, two-tank plant

Zusammenfassung: In dieser Veröffentlichung wird ein
robuster Evolutions- Cloud-basierter Regler mit dem Na-
men RECCo vorgestellt. Der Regler hat eine entwickelnde
Fuzzy-Struktur und die Regeln werden durch Datenclouds
dargestellt. Der entwickelnde Teil des Algorithmus erlaubt
das Hinzufügen neuer Regeln (Wolken) und darüber hin-
aus passt das robuste adaptive Gesetz, das die Methode
des steilsten (Gradienten-) Abstiegs anwendet, die PID-R-
Parameter jeder Wolke an. Es werden auch einige Schutz-
mechanismen eingeführt, die die Robustheit des Algorith-
mus verbessern. DieWirksamkeit des Reglerswurde am si-
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mulierten Ausgleichsbehältermodell und an einer realen
Zweitankanlage getestet. Beide Anlagen haben eine sehr
ähnliche Struktur, aber eine unterschiedliche nichtlinea-
re Dynamik. Bei einem gleichen Initialisierungsverfahren
steuert der RECCo Regler beide Anlagen effizient.

Schlagwörter: Robuste Regelung, Evolutions-Fuzzy-
System, Adaptiver Regler, Ausgleichsbehälter, Zwei-Tank-
Anlage

1 Introduction

The concept of evolving fuzzy rule-based (FRB) systems
and its application to control problems has gained signifi-
cant attention and contribution since it was introduced in
[1, 2]. One can mention the work of the authors presented
in [3] and [4], which focus on the control of twin-rotor sys-
tems and [5] with control of a prosthetic hand. Moreover,
[6] also have proposed an evolving FRB approach to con-
trol of non-linear dynamic systems and, more recently, to
control and navigation of quad-copters [7]. The authors
in [8–12] presented different types of evolving controllers
which use an eFuMo [13] method for partitioning the non-
linear space. In [14] was presented a new approach to de-
sign of experiments (DoE), based on an evolving fuzzy
model structure. There are also some methods that tackle
the problemof the optimal tuning of themembership func-
tions of fuzzy PID controller [15–17].

In this paper a robust evolving cloud-based controller
(RECCo) is used for controlling the real two-tank pilot
plant. The RECCo is a fuzzy type of controller which uses
data clouds [18] to define themembership functions (fuzzy
rules) in the antecedent part. The consequent part consists
of adaptive local PID-R (Proportional Integral Derivative
with Compensation of the operating point) controllers for
each rule with additional compensation of the operating
point.
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The fuzzy structure of the controller is not fixed, but
evolves during the control of the plant. According to the
maximal local density, the current data point is associated
with one of the existing clouds. If this density is lower than
thedefined threshold anewcloud (rule) is added (evolving
part). Furthermore, the PID parameters of the local con-
trollers are updated using the stable Lyapunov approach
of steepest descent. Therewere already someattempts pro-
posed of using RECCo algorithm for controlling real and
simulated processes [19–21].

The effectiveness of the proposed control algorithm
was tested on a simulated surge tank and on a real two-
tank pilot plant. The RECCo controller was set with default
values of the design parameters and it was initialized with
the first data point received. Furthermore, the PID-R pa-
rameters for the first local controller were set to zero and
were adapted in an online manner.

The real two tank plant used for validation in this
work has been object of study of different authors. Since it
has multiple real-world and industrial-grade sensors, ac-
tuators and controllers, we have to handle different fac-
tors from real-world applications that are very difficult to
simulate, such as noise, process and inertia. A few au-
thors have recently proposed different control approaches
to the plant. A self-evolving cloud-based controller was
proposed by [19]. The work focus on an AnYa architec-
ture, which introduces the concept of data clouds as gran-
ular structures (rather than traditional clusters). Previ-
ously, [22] had proposed a multi-stage hierarchical fuzzy
controller for the referred pilot plant, that requires mini-
mal manual parameterization and it is able to cope with
the plant non-linearities. Furthermore, many studies on
the field of fault detection and diagnosis were performed
on the pilot plant. [23] proposes real-time fault detection
based on the concept of recursive density estimation as
a metric for detection of multi-signal anomalies. The con-
cept was later extended to encompass fault classification
[24, 25]. Fault detectionwas again assessed in [26] with the
concept of typicality andeccentricity data analytics,where
abnormal (eccentric) data samples are automatically de-
tected. Finally, a self-evolving classificationmethod based
on the eccentricity metric was introduced in [27] with very
promising results.

This paper is organized as follows. In Section 2 the
RECCo evolving adaptive controller is presented. Next, in
Section 3 two plans are explained, the surge tank (Sub-
section 3.1) and the real two-tanks pilot plant (Subsection
3.2). The experimental results of both plants and the effi-
ciency of the algorithm are presented in Section 4. Finally,
the conclusions are drawn in Section 5.

2 Evolving adaptive controller
RECCo

In this section the robust evolving cloud-based controller
(RECCo) will be described. Theoretically, the controller
could be initialized from the first data sample received. But
of course, any existing information about the controlled
process canbeused to suitably initialize thedesignparam-
eters. After the phase of initialization finishes, the struc-
ture evolves with every received data sample (when some
criteria are satisfied). Furthermore, the controller’s param-
eters are adapted in online manner.

The RECCo is a type of ANYA fuzzy rule-based (FRB)
system with non-parametric (cloud-based) antecedents
[18]. This controller applies the concept of local density in
normalizedproblemspace todefine themembership of the
current data to the existing clouds. Incoming data samples
are analyzed in an onlinemanner and each sample is asso-
ciatedwith all of the cloudswith a certainmembership but
only the parameters of the nearest cloud (maximal den-
sity) are updated.

The structure of the RECCo controller is based on the
ANYA FRB system and has the following form:

Ri : IF (xk ∼ X
i) THEN (ui) (1)

where the number of rules Ri is equal to the number of
existing clouds c, which changes during controlling the
process (evolving part). The fuzzy antecedent part is de-
fined with the operator ∼which could be linguistically ex-
pressed as ‘is associatedwith’. Thatmeans that the current
data xk = [x1, x2, . . . , xn]T is related to the i-th cloudXi ∈ ℝn

with a certain membership. The consequent part consists
c local controllers (ui), one for each rule. To calculate the
final control action the weighted average method is used
(defuzzification).

The degree of association between the data sample xk
and corresponding cloud Xi is measured by the normal-
ized relative density as follows:

λik =
γik
∑cj=1 γ

j
k

i = 1, . . . , c (2)

where γik is the local density of the i-th cloud for the cur-
rent data xk . The local density takes in consideration all
the previous data samples associated with a certain cloud
and is calculated as follows:

γik =
1

1 +
∑M

i
j=1 ‖xk−xij‖2

Mi

(3)
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where Mi is the number of points associated with the i-th
cloud. In this case the Euclidean distances between the
new data xk and all data points of the i-th cloud is used.
But again, any other type of distance measure could also
be used (e. g., Mahalanobis in [28–30]). From the practical
point view and for easier implementation, local density (3)
can be recursively rewritten as follows:

γik =
1

1 + ‖xk − μik‖
2 + σik − ‖μ

i
k‖

2 (4)

where μik is the mean value and σik is the mean-square
length of the data points in the i-th cloud. Both of them
can be recursively calculated as follows:

μik =
Mi − 1
Mi μik−1 +

1
Mi xk (5)

σik =
Mi − 1
Mi σik−1 +

1
Mi ‖xk‖

2 (6)

The initial conditions when a new cloud is added (Mi = 1)
are μi1 = x1 and σi1 = ‖x1‖

2 for the mean value and mean-
square length, respectively.

The evolving law in this paper consists only a mecha-
nism for adding new clouds (rules). We decide to use just
adding mechanism due to simplicity of the implementa-
tion and because it is sufficient for control the plants pre-
sented in Section 3. The adding mechanism relies on the
local density γik of the current data sample with the ex-
isting clouds. Once a new data sample arrive we need to
calculate c different local densities between the sample
and all the existing clouds. According to themaximal local
density (maxi γik) the data sample is associated with that
cloud and the properties are updated (equations (5) and
(6)). But, if the maximal local density (maxi γik) is lower
than the threshold value γmax a new cloud is added. Due
to the problem space normalization [31] the threshold can
be fixed γmax = 0.93. Beside this some other criteria need
to be fulfilled before adding a new cloud (e. g., certain time
nadd has passed from the last change).

The reference model defines the desired trajectory yr

that the controlled variable y should follow. Suggestions
for selecting the structure of reference model are less or
equal order of the plant [32]. Moreover, the time constants
have to be similar (usually slightly shorter) to the dom-
inant time constant of uncontrolled process. According
to the controlled plant we define simple first order linear
reference-model as:

yrk+1 = ary
r
k + (1 − ar)rk 0 < ar < 1 (7)

where rk is the reference signal the parameter ar can be
approximated by (1 − Ts

τ ), where Ts is the sampling period

of the process and τ is the time constant which is slightly
shorter than the estimated time constant of the controlled
plant. The goal of the controller, is to provide efficient per-
formance and to ensure that the tracking error is as small
as possible. The tracking error represents the deviation of
the plant output from the desire trajectory and is defined
as follows:

εk = y
r
k − yk (8)

Once we defined reference model and the tracking er-
ror, we can define the data point xk in a normalized data
space as follows [20]:

xk = [ εk
Δε ,

yrk−rmin
Δr ]

T
= [εk,norm yrk,norm]

T (9)

where Δr = rmax − rmin and Δε =
Δr
2 .

For the consequent part of the RECCo algorithm the
PID-R controller is used [21] with the following form:

uik = P
i
kεk + I

i
kΣ

ε
k + D

i
kΔ

ε
k + R

i
k , i = 1, . . . , c (10)

where Pik , I
i
k ,D

i
k are controller gains while R

i
k is compensa-

tion of the operating point. Σεk and Δ
ε
k in (10) are discrete-

time integral and derivative of the tracking error, respec-
tively, and can be calculated as follows:

Σεk = {
Σεk−1 + εk , umin < u(k) < umax
Σεk−1, u(k) = umin or u(k) = umax

(11)

Δεk = εk − εk−1 (12)

As we said above, in this paper we introduce an anti-
windup mechanism for protecting the integral explosion.

The vector of the PID-R parameters is denoted as θik =
[Pik , I

i
k ,D

i
k ,R

i
k]

T
. The vector of the first cloud is initialized

with zeros θ10 = [0,0,0,0]
T , while all later added clouds

are initialized with mean value of the parameter’s vector
of all previous clouds as follows:

θc0 =
1

c − 1

c−1
∑
j=1

θjk (13)

where c is the index of the newly added cloud.
The adaptation of the PID-R parameters is made in an

online manner and only the parameters of the cloud with
maximal local density are updated while others are kept
constant:

θik = θ
i
k−1 + Δθ

i
k (14)

and the adaptation of the PID parameters was introduced
in [21], but in this article we proposed an improved version
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as follows:

ΔPik = αP Gsignλ
i
k
|ekεk |
1 + r2k

ΔIik = αI Gsignλ
i
k

!!!!ekΔ
ε
k
!!!!

1 + r2k

ΔDi
k = αD Gsignλ

i
k

!!!!ekΔ
ε
k
!!!!

1 + r2k
ΔRik = αR Gsignλ

i
k

εk
1 + r2k

(15)

where αP , αI , αD, αR are the adaptation gains of the con-
troller parameters, Gsign = ±1 is the known sign of the pro-
cess gain, ek = rk −yk is the control error. The default value
of the adaptation gains is 0.1 and is used when the range
of the control variable is (umin = 0/4, umax = 20). When the
range is different, the value of the parameters is rescaled
as follows:

αnew =
umax − umin

20
⋅ 0.1 (16)

For example, if the range is from umin = 0 to umax = 100
the new value of the adaptive gains will be αnew = 0.5.

The absolute values in (15) are used only in the start-
ing phase of the control performance (five time constants
is enough) and after that they are omitted from the adap-
tation law. Please refer to [33] for more details about the
absolute values in (15).

Finally, for the defuzzification the weighted average is
used (but not limited to this form) and therefore, the con-
trol variable becomes:

uk =
c
∑
i=1

λiku
i =
∑ci=1 γ

i
ku

i

∑ci=1 γik
(17)

where ui denotes the contribution of the i-th local con-
troller.

In the following four mechanisms for improving the
robustness and to minimize the negative influence of dis-
turbances (parasitic dynamics) will be introduced:

2.1 Dead zone in the adaptation law

To improve the robustness under the unknown bounded
disturbances and modeling errors, the RECCo controller
includes a dead-zone in adaptation law. The general idea
behind the dead-zonemechanism, in case of bounded dis-
turbances, is to turn off the adaptation algorithmwhen the
absolute value of the tracking error is smaller than a cer-
tain threshold [34]:

Δθ̄ik = {
Δθik |εk | ≥ ddead
0 |εk | < ddead

i = 1, . . . , c (18)

The parameter ddead should be chosen slightly larger than
the process noise to improve the effectiveness of the adap-
tive law. A larger threshold implies a shorter adaptation
period and larger tracking error, while smaller value can
lead to parameter drift.

2.2 Parameter projection

Parameter projectionmechanism is used to guarantee that
the estimation of the parameters will stay within finite
known region [35]. In the case of the positive plant gain all
the parameters should be bounded by 0 from bellowwhile
upper bound may or may not be provided. The adaptive
law in (14) is generalized as follows:

θik =
{{{
{{{
{

θik−1 + Δθ
i
k θ ≤ θik−1 + Δθ

i
k ≤ θ

θ θik−1 + Δθ
i
k < θ

θ θik−1 + Δθ
i
k > θ

i = 1, . . . , c (19)

In our case we chose θ = 0 and θ = ∞ for the controller
gains Pk, Ik, and Dk, while for the compensation of the op-
erating point Rk the lower bound was θ = −∞.

2.3 Leakage in the adaptation law

The use of leakage in the adaptation law is a very known
approach for improvement of robustness of adaptive con-
trol [36].

Including the leakage in the adaptation law results in:

θik = (1 − σL)θ
i
k−1 + Δθ

i
k i = 1, . . . , c (20)

where σL defines the extent of the leakage. The value of
leakage used in this paper is σL = 10−6.

2.4 Interruption of adaptation

In the RECCo algorithm we first calculate the adaptation
of the PID parameters (Δθik) and then the control variable
uk . In some cases this two steps can be in conflict, which
means that the adaptation causes control signal which is
outside the limits [umin, umax]. In such case the adaptive
law should be interrupted in the following manner:

Δθ̄ik = {
Δθik umin ≤ uk ≤ umax
0 otherwise

i = 1, . . . , c (21)
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3 Problem description
In this section two experiments are presented. First exper-
iment is a simulated surge tank [37] and the second one is
a real plant of two tanks developed by DeLorenzo [38]. In
both cases themain goal is to control the liquid level in the
tank manipulating the input liquid flow.

3.1 Simulation example: Surge tank

The simulation example of surge tank, presented in [37],
can be described with the following differential equation:

dy(t)
dt
=
−c√2gy(t)
A(y(t))

+
1

A(y(t))
u(t) (22)

where y(t) is the liquid level inmeters (0÷10m); u(t) is the
input flow (control signal), which can be positive or nega-
tive in the range [umin, umax] = [−50, 50]; g = 9.8m/sec2 is
gravity; c = 1 is the known cross-sectional area of the out-
put pipe; and A(y(t)) = ay(t)2 + b is cross-sectional area of
the tank;

As suggested in [37] we choose a = 1 and b = 2 as
the nominal plant parameters. After the discretization and
usinganEuler approximation thedifferential equation (22)
can be rewritten:

yk+1 = yk + T [
−√19.6yk
y2k + 2

+
1

y2k + 2
uk] (23)

where the sampling time is T = 0.1. According to [39] the
time constant of the process was estimated to τ = 10 s.

The control objective of the surge tank is to control the
liquid level in the tank (y(t) = h(t)) by manipulating the
input liquid flow u(t).

3.2 Real example: Two-tank pilot plant

The plant used for testing the proposed algorithm is a two
tank pilot plant for industrial control, developed by De-
Lorenzo [38]. The plant (see Fig. 2a) is physically located in
the Automation Laboratory of the Federal Institute of Rio
Grande do Norte – Campus Natal/Zona Norte, Brazil. The
plant allows various experiments on continuous processes
based on four typical variables – pressure, temperature,
flow and level. The communication between the controller
and the plant is granted by an OPC interface [40].

The pilot plant includes: sensors for temperature,
pressure, flow and level; indicators that convert physical
into electrical signals, to be processed by a PLC; one ter-
minal bus, where all existing electrical signals are made

available for the controller; a SCADA software for param-
eter configuration and plant monitoring; a physical panel
with a PLC and all electrical components for plant control;
two pressurized vessels: the top one made of acrylic, T1,
and the bottom one, made of stainless steel, T2; two direc-
tional valves, V1 and V2; a centrifugal pump for recircula-
tion, controlled by a frequency inverter; a heater and heat
exchange system. Fig. 2b illustrates the didactic scheme of
the pilot plant.

As easily seen in Fig. 2b, the tanks are connected
through a piping system and enable one directional water
flow and liquid transfer in both tanks. The transfer from T1
to T2 is made by gravity, while the transfer from T2 to T1 is
made by pressure generated by the centrifugal pump. The
valvesV1 andV2 are used to control the flow in each part of
the process. For this study, temperature was not assessed.

The control objective of the two tank plant is to control
the water level in tank T1 (yk = LT1) by manipulating the
pump speed (uk = Vpump). The valvesV1 andV2 are opened
to 100%.

4 Results

In this section the practical results of the RECCo controller
for simulated surge tank and for real two-tank pilot plant
are presented. The reference signal rk (7) is chosen to cover
the majority of the process’s range ([ymin, ymax]) to see the
ability of learning in different operating points. The ad-
vantage of the proposed algorithm is that it requires ba-
sic knowledge of the controlled process (input and out-
put range, time constant and sampling time). The Table 1
shows all the design parameters for both processes. First

Table 1: Design (control) parameters for controlled plants.

Parameter Surge Tank Two-Tank Plant

Pl
an
tp

ro
pe
rt
ie
s umin -50 0

umax 50 100
ymin 0 0
ymax 10 100
τ 10 40
Ts 0.1 1

Ev
ol
vi
ng

ar ≈ 1 − Ts/τ 0.99 0.975
γmax 0.93 0.93
cmax 100 100
nadd 20 20

Ad
ap
ta
tio

n αnew (15), (16) 0.5 0.5
ddead (18) 0.5 0.5
[θ,θ] (19) [0,∞] [0,∞]
σL (20) 10−6 10−6
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Figure 1: Simulation results of the surge tank.

group of parameters are the plant’s properties, second
group are the evolving and the third group are the param-
eters of the adaptive law.

We should to note that the controller starts with empty
set of rules (1) and the first rule is generated (initialized)
with the first data point received. Also the controller’s
gains (10) are initialized with zeros at the beginning of the
experiment.

4.1 Simulation results of surge tankmodel

Using the parameters presented in Table 1 the simulation
results of surge tank were provided which are presented
in Fig. 1. The reference, model reference, controlled and
control signals are shown for the starting and the finish-
ing phase of the experiment (see first four plots on left
top corner in Fig. 1). On the top right corner the clouds are
presented. In this case the evolving algorithm added three
clouds. The tracking error is shown for the length of whole
experiment. We can notice slight and stable decreasing of
the tracking error. The last four plots in Fig. 1 show the

adaptive parameters (P, I ,D, and R). Again, we can notice
that the parameters converge through time.

4.2 Experimental results of the real two-tank
plant

As we said above the control objective in case of two tank
plant is to control the water level in tank T1 (yk = LT1) by
manipulating the pump speed (uk = Vpump). The valves
V1 and V2 are opened at 100%. In this case we chose the
length of the experiment approximately to 140 h (251 repe-
tition of the chosen reference signal).

The reference r(t), the model-reference yr(t) and the
controlled variable for the starting phase are presented in
Fig. 3 (top plot). The control signal u(t) is presented in bot-
tom plot in the same figure. We can notice that the con-
trolled variable y(t) relatively fast reaches the reference
value but do not follow the model-reference signal. After
the transient period of learning (evolving the structure and
adapting the parameters) the controller more efficiently
control the plant. The finishing phase of the learning is
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(a) Picture of the real plant

(b) A didactic scheme of the plant

Figure 2: Pictures of Two-Tank Plant.

Figure 3: Starting phase. The reference r(t), the model reference
yr(t), and the controlled variable y(t) (top plot) and the control sig-
nal u(t) (bottom plot).

Figure 4: Finishing phase. The reference r(t), the model reference
yr(t), and the controlled variable y(t) (top plot) and the control sig-
nal u(t) (bottom plot).

Figure 5: The sum of absolute error SAE for each cycle.

presented in Fig. 4, where the reference r(t), the model-
reference yr(t) and the controlled variable are shown.

The sequence presented in Fig. 3 is just one cycle of
the learning process. This cycle was repeated 250 times to
gain enough knowledge for all operational points. In Fig. 5
values of SAEκ for each cycle are shown. We can see that
during the learning process the sum of absolute tracking
error decreases.

During the learning phase 4 clouds were created (see
Fig. 6). For each data cloud the adaptive PID-R parameters
are shown in Fig. 7.

5 Conclusion

The main purpose of this paper was to show the ability
of learning of the RECCo controller. Using the same initial
parameters, the RECCo algorithm is capable of controlling
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Figure 6: Data clouds (fuzzy rules) created.

Figure 7: The process of adaptation of the PID-R parameters for each
data cloud.

processes with different dynamics. Only the basic knowl-
edge of the controlled process is required (i. e., input and
output range, estimated time constant and the sampling
time). The performance of the algorithm was tested on
simulated surge tankmodel and on the real two-tank pilot
plant. In both cases the algorithm shows that the con-
trol efficiency improves through time and the parameters
converges. The protective mechanisms also improve the
robustness of the adaptive law.
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